Math 113 (Calculus II) Test 1 Form A KEY

Multiple Choice. Fill in the answer to each problem on your scantron. Make sure your name, section and instructor is on your scantron.

1. Find $\int_{4}^{9} \frac{\ln y}{\sqrt{y}} d y$
a) $6 \ln 9-2 \ln 4+4$
b) $\frac{3}{2} \ln 9-\ln 4+2$
c) $6 \ln 9-4 \ln 4-2$
d) $6 \ln 9-4 \ln 4-4$
e) $\frac{3}{2} \ln 9-\ln 4-2$
f) $6 \ln 9-2 \ln 4-4$
g) None of the above

Solution: d)
2. Rotate the area between the curves

$$
x=0, \quad y=x^{1 / 3}, \quad y=1
$$

about $y=-1$. The volume is
a) $\frac{1}{10} \pi$
b) $\frac{3}{10} \pi$
c) $\frac{6}{10} \pi$
d) $\frac{9}{10} \pi$
e) π
f) 3π
g) None of the above.

Solution: d)

3. Rotate the area between $y=x$ and $y=x^{2}$ about $x=a(a>1)$. For what value of a is the volume $\frac{\pi}{2}$?
a) 1
b) 2
c) 3
d) 4
e) 5
f) 6
g) None of the above.

Solution: b)
4. Evaluate $\int_{0}^{4} 3 \sqrt{16-x^{2}} d x$ by interpreting it as an area.
a) π
b) 2π
c) 3π
d) 4π
e) 12π
f) 24π
g) None of the above.

Solution: e)
5. A force of 12 lb is required to hold a spring stretched 2 ft beyond its natural length. How much work is done in stretching it from its natural length to 4 ft beyond its natural length?
a) 12 lb
b) 24 lb
c) 36 lb
d) 48 lb
e) $48 \mathrm{ft}-\mathrm{lb}$
f) $36 \mathrm{ft}-\mathrm{lb}$
g) $24 \mathrm{ft}-\mathrm{lb}$
h) $12 \mathrm{ft}-\mathrm{lb}$

Solution: e)
6. Find the average value of the function $f(\theta)=\sin (\theta) \cos (\theta)$ over the interval $\left[0, \frac{\pi}{3}\right]$.
a) $\frac{3}{8}$
b) $\frac{3}{4}$
c) $\frac{3}{2}$
d) $\frac{9}{8 \pi}$
e) $\frac{9}{4 \pi}$
f) $\frac{\sqrt{3}}{4}$
g) $\frac{3 \sqrt{3}}{4 \pi}$
h) None of the above.

Solution: d)
7. $\int_{0}^{\pi / 2} \cos ^{4}(2 x) d x$
a) $\frac{3 \pi}{8}$
b) $\frac{3 \pi}{16}$
c) $\frac{3 \pi}{32}$
d) $\frac{3 \pi}{32}+\frac{9}{64}$
e) $\frac{3 \pi}{16}+\frac{9}{16}$
f) $\frac{3 \pi}{8}+\frac{9}{16}$
g) $\frac{3 \pi}{8}+\frac{9}{8}$
h) None of the above.

Solution: b)
8. $\int_{0}^{\frac{\pi}{12}} \tan ^{3}(3 x) \sec ^{4}(3 x) d x$
a) $\frac{3 \pi}{12}$
b) $\frac{3 \pi}{18}$
c) $\frac{3 \pi}{36}$
d) $\frac{5}{12}$
e) $\frac{5}{18}$
f) $\frac{5}{36}$
g) $\frac{2}{3}$
h) None of the above.

Solution: f)

Free response: Give your answer in the space provided. Answers not placed in this space will be ignored. 6 points each
9. (5 points) Set up the integral that represents the volume of the solid created by rotating the area between

$$
y=\frac{1}{4} x^{2}+1, \quad y=x, \quad x=0
$$

about $x=2$. Do not evaluate the integral.

Solution:

$$
\int_{0}^{2} 2 \pi(x-2)\left(\frac{1}{4} x^{2}-x+1\right) d x=2 \pi \int_{0}^{2} 1 / 4 x^{3}-3 / 2 x^{2}+3 x-2 d x
$$

10. (5 points) Set up the integral that represents the volume of the solid created by rotating the area between

$$
x=y^{2}+2, \quad x=\sqrt{y}, \quad y=0, \quad y=2
$$

about $x=-1$. Do not evaluate the integral.

Solution:

$$
\int_{0}^{2} \pi\left[\left(y^{2}+2+1\right)^{2}-(\sqrt{y}+1)^{2}\right] d y=\pi \int_{0}^{2} y^{4}+6 y^{2}+8-y-2 \sqrt{y} d y
$$

11. (5 points) Find the area of the region bounded by the curves $x=y^{2}$ and $x=8-y^{2}$.

Solution: If we set $y^{2}=8-y^{2}$, we have $y^{2}=4$, or $y= \pm 2$. The area is

$$
\begin{gathered}
\int_{-2}^{2}\left(8-y^{2}-y^{2}\right) d y=\int_{-2}^{2}\left(8-2 y^{2}\right) d y=\left(8 y-\frac{2}{3} y^{3}\right)_{-2}^{2} \\
\quad=16-\frac{16}{3}-\left(-16+\frac{16}{3}\right)=32-\frac{32}{3}=\frac{64}{3}
\end{gathered}
$$

12. (5 points) Find $\int x^{3} \sin \left(x^{2}\right) d x$.

Solution: Let $z=x^{2}$. then, $d z=2 x d x$, and

$$
\int x^{3} \sin \left(x^{2}\right) d x=\int z \sin (z) \frac{d z}{2}
$$

We now use integration by parts: $u=z, d u=d z, d v=\sin z d z$, and $v=-\cos z$. The above integral then becomes

$$
\begin{aligned}
\frac{1}{2}(-z \cos z & \left.+\int \cos z d z\right)=\frac{1}{2}(-z \cos z+\sin z)+C \\
& =\frac{1}{2}\left(-x^{2} \cos x^{2}+\sin x^{2}\right)+C
\end{aligned}
$$

13. (5 points) Find $\int_{0}^{1} 3 e^{-s} s^{2} d s$

Solution: We need to use integration by parts twice:
Let $u=s^{2}, d u=2 s d s, d v=e^{-s} d s, v=-e^{-s}$. Then the above integral is

$$
3\left(-s^{2} e^{-s}+2 \int s e^{-s}\right)
$$

Using integration by parts again, we have $u=s, d u=d s, d v=e^{-s}, v=-e^{-s}$. Thus, the above becomes

$$
\begin{gathered}
3\left(-s^{2} e^{-s}+2\left(-s e^{-s}+\int e^{-s}\right)\right)+C \\
=-3 s^{2} e^{-s}-6 s e^{-s}-6 e^{-s}+C
\end{gathered}
$$

14. (5 points) A 24 ft chain weighs 12 lb and hangs from a ceiling. Find the work done in lifting the lower end of the chain to the ceiling so that it's level with the upper end.
Solution: After lifting the end of the chain x feet, there is $24-x$ feet above, so the chain below is a total of x feet. However, the chain below, is doubled, so there is $x / 2$ feet being held. Since the chain weighs $1 / 2 \mathrm{lb}$ per foot, the force acting on the lifted portion of the chain at that point is $F(x)=\frac{x}{4}$.
Since the end of the chain is lifted a distance of 24 feet, the work done is

$$
\int_{0}^{24} \frac{x}{4} d x=\left.\frac{x^{2}}{8}\right|_{0} ^{24}=\frac{24^{2}}{8}=\frac{9 \cdot 8^{2}}{8}=72 \mathrm{ft}-\mathrm{lbs}
$$

15. (5 points) Given the function $f(x)=x^{3}$ over the interval $[0,2]$, find c such that the average value of f is equal to $f(c)$.

Solution: The average value is

$$
\frac{1}{2-0} \int_{0}^{2} x^{3} d x=\left.\frac{1}{2} \frac{x^{4}}{4}\right|_{0} ^{2}=\frac{16}{8}=2 .
$$

For $f(c)=2$, we need $c^{3}=2$, or $c=\sqrt[3]{2}$.
16. (5 points) Find $\int \sin (3 x) \cos (4 x) d x$.

Solution:

$$
\int \sin (3 x) \cos (4 x) d x=\int \frac{1}{2}(\sin (7 x)-\sin (x)) d x=-\frac{\cos (7 x)}{14}+\frac{\cos (x)}{2}+C
$$

17. (5 points) Find the volume of the solid S that has a triangular base with vertices in the x - y plane $(0,0),(1,0)$, and $(0,1)$. Cross-sections perpendicular to the y-axis are equilateral triangles.
Solution: At height y, the length across the triangle is $1-y$. The area of an equilateral triangle of side s is $\frac{\sqrt{3}}{4} s^{2}$. Thus, the cross sectional area is given by

$$
\frac{\sqrt{3}}{4}(1-y)^{2}
$$

and the volume is

$$
\begin{gathered}
\int_{0}^{1} \frac{\sqrt{3}}{4}(1-y)^{2} d y=-\left.\frac{\sqrt{3}}{4} \frac{(1-y)^{3}}{3}\right|_{0} ^{1} \\
=-\frac{\sqrt{3}}{12}(0-1)=\frac{\sqrt{3}}{12}
\end{gathered}
$$

